CHEMISTRY 2.7

Name:_____

WORKSHEET ONE

REDOX #1

1. State the oxidation number of the underlined element in each of the following species.

(a)	<u>H</u> Cl	 (j)	<u>Fe</u> SO ₄	
(b)	$\underline{C}O_2$	 (k)	$\underline{Fe}_2(CO_3)_3$	
(c)	$\underline{SO_3}^{2-}$	 (1)	K <u>Mn</u> O ₄	
(d)	<u>C</u> O	 (m)	$\underline{Mn}I_2$	
(e)	К <u>I</u>	 (n)	Ca <u>O</u>	
(f)	$H_2 \underline{O}_2$	 (0)	<u>$Cr_2O_7^{2-}$</u>	
(g)	<u>Cr(NO3)</u> 3	 (p)	HSO3	
(h)	\underline{Br}_2	 (q)	<u>Zn</u> O	
(i)	$H_2\underline{S}O_4$	 (r)	<u>H</u> ₂ O	

2. State whether each of the following examples is an oxidation or a reduction reaction.

- (a) Gain of oxygen.
- (b) Gain of hydrogen.
- (c) An element becoming a negative ion.
- (d) An atom that increases its oxidation number.

3. State whether each of the following reactions is an oxidation or a reduction reaction.

(a)	O_2	to	O^{2-}	
(b)	I_2	to	Γ	
(c)	Mg	to	Mg^{2+}	
(d)	HSO ₃ ⁻	to	SO4 ²⁻	
(e)	Fe ³⁺	to	Fe ²⁺	
(f)	Br⁻	to	Br ₂	
(g)	$Cr_{2}O_{7}^{2}$	to	Cr ³⁺	
(h)	MnO_4^-	to	Mn^{2+}	
(i)	Cla	to	Cl	
(1)	C12	10		
(j)	H'	to	H_2	

4. For each of the reactions that follow write the balanced ion-electron half equation.

