CHEMISTRY 2.7

WORKSHEET ONE

REDOX \#1

1. State the oxidation number of the underlined element in each of the following species.
(a) $\underline{\mathrm{HCl}}$ \qquad
(b) $\quad \mathrm{CO}_{2}$ \qquad
(c) $\mathrm{SO}_{3}{ }^{2-}$

(d) $\underline{\mathrm{CO}}$ \qquad
(e) KI \qquad
(f) $\mathrm{H}_{2} \underline{\mathrm{O}}_{2}$ \qquad
(g) $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}$ \qquad
(h) $\quad \underline{B r}_{2}$ \qquad
(i) $\mathrm{H}_{2} \mathrm{SO}_{4}$ \qquad
(j) $\quad \mathrm{FeSO}_{4}$ \qquad
(k) $\quad \underline{\mathrm{Fe}_{2}}\left(\mathrm{CO}_{3}\right)_{3}$ \qquad
(1) KMnO_{4} \qquad
(m) $\underline{\mathrm{MnI}}_{2}$ \qquad
(n) CaO
(o) $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ \qquad
(p) $\mathrm{H}_{2} \mathrm{O}_{3}^{-}$ \qquad
(q) $\underline{\mathrm{ZnO}}$ \qquad
(r) $\quad \underline{H}_{2} \mathrm{O}$
\qquad
2. State whether each of the following examples is an oxidation or a reduction reaction.
(a) Gain of oxygen.
(b) Gain of hydrogen.
(c) An element becoming a negative ion.
(d) An atom that increases its oxidation number. \qquad
3. State whether each of the following reactions is an oxidation or a reduction reaction.
(a) O_{2} to O^{2-}
(b) I_{2} to I^{-}
(c) Mg to Mg^{2+} \qquad
(d) $\mathrm{HSO}_{3}{ }^{-}$to $\mathrm{SO}_{4}{ }^{2-}$ \qquad
(e) Fe^{3+} to Fe^{2+} \qquad
(f) Br^{-}to Br_{2} \qquad
(g) $\quad \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ to Cr^{3+} \qquad
(h) MnO_{4}^{-}to Mn^{2+} \qquad
(i) Cl_{2} to Cl^{-}
(j) H^{+}to H_{2}
\qquad
\qquad
4. For each of the reactions that follow write the balanced ion-electron half equation.
(a) Cu to Cu^{2+} \qquad
(b) Fe^{2+} to Fe^{3+} \qquad
(c) $\mathrm{SO}_{3}{ }^{2-}$ to $\mathrm{SO}_{4}{ }^{2-}$
(d) $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ to Cr^{3+} \qquad
(e) MnO_{4}^{-}to Mn^{2+}
5. For each of the following reactions, state which element is acting as the oxidant and which is acting as the reductant (extension)
(a) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}$
(b) $\mathrm{Fe}+2 \mathrm{HCl} \rightarrow \mathrm{FeCl}_{2}+\mathrm{H}_{2}$ \qquad
(c) $\mathrm{Mg}+\mathrm{Cu}^{2+}{ }_{(\text {aq })} \rightarrow \mathrm{Mg}^{2+}{ }_{(\text {aq })}+\mathrm{Cu}$ \qquad
(d) $\quad 2 \mathrm{Fe}^{2+}{ }_{\text {(aq) }}+\mathrm{I}_{2} \rightarrow 2 \mathrm{Fe}^{3+}{ }_{\text {(aq) }}+2 \mathrm{I}_{\text {(aq) }}$ \qquad
6. For each of the following reactions, state which element is being oxidised and which is being reduced.
(a) $\mathrm{Cl}_{2}+2 \mathrm{Br}_{\text {(aq) }}^{-} \rightarrow 2 \mathrm{Cl}_{\text {(aq) }}^{-}+\mathrm{Br}_{2}$ \qquad
(b) $\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$ \qquad
(c) $\quad \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}$ \qquad
(d) $\mathrm{Mg}+\mathrm{Cu}^{2+}{ }_{\text {(aq) }} \rightarrow \mathrm{Mg}^{2+}{ }_{(\text {aq })}+\mathrm{Cu}$ \qquad
(e) $\quad \mathrm{SO}_{3}{ }^{2-}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{SO}_{4}{ }^{2-}{ }_{(\mathrm{aq})}+2 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+2 \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}$ \qquad
(f)
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}{ }_{(\mathrm{aq})}+14 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+6 \mathrm{Br}^{-}{ }_{(\mathrm{aq})} \rightarrow 2 \mathrm{Cr}^{3+}{ }_{(\mathrm{aq})}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Br}_{2}$ \qquad
7. Referring to Question 6 explain your reasoning for
(a) \qquad
\qquad
\qquad
(c) \qquad
\qquad
\qquad
(d) \qquad
\qquad
\qquad
